
通讯方式
西南大学食品科学学院40教702
邮箱:zhouy2017@swu.edu.cn
学习工作经历
2018.1至今 西南大学食品科学学院,副教授
2015.10-2016.12 美国加州大学伯克利分校,联合培养博士
2013.10 英国诺丁汉大学,交换学生
2012.9-2017.6 中国农业大学,工学博士(硕博连读)
2008.8-2012.6 中国农业大学,理学学士
2002.9-2008.6 西南师大附中
业余爱好
运动(羽毛球业余中等水平女单,排球和女团舞初学者)
运动以外(比格犬、B站知识区、全民K歌、早睡早起)
研究兴趣
凝胶食品(比如,酸奶、魔芋爽、果冻、面条等含有大量水分的半固体食品)
食品流变学(采用流变学的方法解决食品加工与品质的问题)
人工智能、深度学习与计算机视觉(解决食品科学研究中的复杂问题)*双导师联合指导*
招生方向
083200食品科学与工程
095135食品加工与安全
086000生物与医药
指导的研究生(已毕业及在读)
2017级:田缘
2018级:郑钦月
2019级:任旭、崔潇文
2020级:李树豪、刘振军、张迎凤
2021级:梁小敏、宋佳鑫、宋庆辉
2022级:胡森、孙纯安、王旖敏
2023级:徐豆豆、汪诗懿
2024级:廖槟、陈晓轩、王雅琴
主讲课程
食品物性学(一般难度本科课程)
食品物理化学(地狱难度本科课程)
食品大分子结构与功能(一般难度博士课程)
学术论文(第一作者及通讯作者)
1 A fracture mechanics approach to investigating the crunchy texture of konjac glucomannan gels through imitative chewing tests. Food Hydrocolloids 2025, 111212.
2 Dispersion stabilization of proteins by carrageenan in baked milk: A quantitative separation study. Food Chemistry, 2025, 142835.
3 Predicting straw drinking ability of liquid foods by pipe-flow rheometry. Food Research International, 2024, 115297.
4 Oscillatory rheometry for elucidating the influence of non-network biopolymer aggregation on pectin-gelatin composite gels. 2024, 128543.
5 Aggregation of konjac glucomannan by ethanol under low-alkali treatment. Food Chemistry: X, 2022, 15, 100407.
6 Linear and non-linear rheological properties of water-ethanol hybrid pectin gels for aroma enhancement. Food Chemistry X, 2022, 14, 100328.
7 Insights into biomacromolecule-based alcogels: A review on their synthesis, characteristics and applications. Food Hydrocolloids, 2022, 128, 107574.
8 Gelation mechanism of alkali induced heat-set konjac glucomannan gel. Trends in Food Science & Technology, 2021, 116, 244-254.
9 Dietary fiber-gluten protein interaction in wheat flour dough: Analysis, consequences and proposed mechanisms. Food Hydrocolloids, 2021, 111, 106203. (ESI高被引)
10 Fabrication and application of starch-based aerogel: technical strategies. Trends in Food Science & Technology, 2020, 99, 608-620.
11 A novel low-alkali konjac gel induced by ethanol to modulate sodium release. Food Hydrocolloids, 2020, 103, 105653.
12 Gastrointestinal and metabolic effects of noodles-based konjac glucomannan in rats. Food & Nutrition Research, 2019, 63, 1997.
13 Physicochemical and rheological characterization of pectin-rich fraction from blueberry (Vaccinium ashei) wine pomace. International Journal of Biological Macromolecules, 2019, 128, 629-637.
14 Topology evolution and gelation mechanism of alkali induced konjac glucomannan hydrogel. Food Chemistry, 2018, 269, 80-88.
15 Effect of a small amount of sodium carbonate on konjac glucomannan-induced changes in thermal behaviour of wheat starch. Carbohydrate Polymers, 2015, 114, 357-364.
16 Konjac glucomannan-induced changes in thiol/disulphide exchange and gluten conformation upon dough mixing. Food chemistry, 2014, 143, 163-169.
17 Effect of a small amount of sodium carbonate on konjac glucomannan-induced changes in wheat starch gel. Carbohydrate Polymers, 2014, 116, 182-188.
18 Effect of konjac glucomannan on physical and sensory properties of noodles made from low-protein wheat flour. Food Research International, 2013, 51(2), 879-885. (ESI高被引)